WikiNow lets you discover the news you care about, follow the topics that matter to you and share your favourite stories with your friends.

© WikiNow

An autonomous car is a vehicle that is capable of sensing its environment and navigating without human input.

Junior, a robotic Volkswagen Passat, at Stanford University in October 2009.

An autonomous car (driverless car, self-driving car, robotic car) is a vehicle that is capable of sensing its environment and navigating without human input.

Autonomous cars can detect surroundings using a variety of techniques such as radar, lidar, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars have control systems that are capable of analyzing sensory data to distinguish between different cars on the road, which is very useful in planning a path to the desired destination.

Some demonstrative systems, precursory to autonomous cars, date back to the 1920s and 30s. The first self-sufficient (and therefore, truly autonomous) cars appeared in the 1980s, with Carnegie Mellon University's Navlab and ALV projects in 1984 and Mercedes-Benz and Bundeswehr University Munich's Eureka Prometheus Project in 1987. Since then, numerous major companies and research organizations have developed working prototype autonomous vehicles.

Among the potential benefits of automated cars is a significant reduction of traffic accidents, and the resulting deaths and injuries, and related costs, including lower insurance costs; major increases in roadway capacity, with the potential to more than quadruple capacity, resulting in significantly less traffic congestion; enhance mobility for the elderly, people with disabilities, and low-income citizens; relieve travelers from driving and navigation chores, freeing commuting hours with more time for leisure or work; less fuel consumption, producing less air pollution and a lower carbon footprint from road travel; significantly reduced parking space needs in cities, freeing space for other public and private uses; and facilitating or improving existing and new business models of mobility as a service, including carsharing, e-hailing, ride hailing services, real-time ridesharing, and other services of the sharing economy, all contributing to reduce car ownership.

Among the main obstacles and disadvantages due to a widespread adoption of autonomous vehicles, in addition to the technological challenges, are disputes concerning liability; the time period needed to turn an existing stock of vehicles from non-autonomous to autonomous; resistance by individuals to forfeit control of their cars; customer concern about the safety of driverless cars; implementation of legal framework and establishment of government regulations for self-driving cars; risk of loss of privacy and security concerns, such as hackers or terrorism; concerns about the resulting loss of driving-related jobs in the road transport industry; and risk of increased suburbanization as driving becomes faster and less onerous without proper public policies in place to avoid more urban sprawl.