WikiNow lets you discover the news you care about, follow the topics that matter to you and share your favourite stories with your friends.

© WikiNow

In biology, phylogenetics /ˌfləˈnɛtɪks, -lə-/ is the study of the evolutionary history and relationships among individuals or groups of organisms . These relationships are discovered through phylogenetic inference methods that evaluate observed heritable traits, such as DNA sequences or morphology under a model of evolution of these traits. The result of these analyses is a phylogeny – a diagrammatic hypothesis about the history of the evolutionary relationships of a group of organisms. The tips of a phylogenetic tree can be living organisms or fossils, and represent the "end," or the present, in an evolutionary lineage. Phylogenetic analyses have become central to understanding biodiversity, evolution, ecology, and genomes.

In biology, phylogenetics /ˌfləˈnɛtɪks, -lə-/ (Greek: φυλή, φῦλον - phylé, phylon = tribe, clan, race + γενετικός - genetikós = origin, source, birth) is the study of the evolutionary history and relationships among individuals or groups of organisms (e.g. species, or populations). These relationships are discovered through phylogenetic inference methods that evaluate observed heritable traits, such as DNA sequences or morphology under a model of evolution of these traits. The result of these analyses is a phylogeny (also known as a phylogenetic tree) – a diagrammatic hypothesis about the history of the evolutionary relationships of a group of organisms. The tips of a phylogenetic tree can be living organisms or fossils, and represent the "end," or the present, in an evolutionary lineage. Phylogenetic analyses have become central to understanding biodiversity, evolution, ecology, and genomes.

Taxonomy is the classification, identification and naming of organisms. It is usually richly informed by phylogenetics, but remains a methodologically and logically distinct discipline. The degree to which taxonomies depend on phylogenies (or classification depends on evolutionary development) differs depending on the school of taxonomy: phenetics ignores phylogeny altogether, trying to represent the similarity between organisms instead; cladistics (phylogenetic systematics) tries to reproduce phylogeny in its classification without loss of information; evolutionary taxonomy tries to find a compromise between them.