No recent news found for **multilinear function**

In linear algebra, a **multilinear map** is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function

In linear algebra, a **multilinear map** is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function

where and are vector spaces (or modules over a commutative ring), with the following property: for each , if all of the variables but are held constant, then is a linear function of .

A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, a multilinear map of *k* variables is called a ** k-linear map**. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra.

If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating *k*-linear maps. The latter coincide if the underlying ring (or field) has a characteristic different from two, else the former two coincide.